<ruby id="d9npn"></ruby>

      <sub id="d9npn"><progress id="d9npn"></progress></sub>

      <nobr id="d9npn"></nobr>

      <rp id="d9npn"><big id="d9npn"><th id="d9npn"></th></big></rp>

      <th id="d9npn"><meter id="d9npn"></meter></th>

      You are not logged in. Your edit will be placed in a queue until it is peer reviewed.

      We welcome edits that make the post easier to understand and more valuable for readers. Because community members review edits, please try to make the post substantially better than how you found it, for example, by fixing grammar or adding additional resources and hyperlinks.

      Defining the value of a distribution at a point

      Let $\omega\in D'(\mathbb R^n)$ be a distribution and $p\in \mathbb R^n$. If there is an open set $U\subset \mathbb R^n$ containing $p$ such that $\omega|_U$ is given by a continuous function $f\in C(U)$, then for every $\phi\in C^\infty_c(\mathbb R^n)$ with $\int_{\mathbb R^n}\phi(x)d x=1$ we can define a Dirac sequence $\{\phi^p_j\}_{j\in \mathbb N}\subset D(\mathbb R^n)$ by $\phi^p_j(x):=j^n\phi(j(x-p))$ which fulfills $$ \omega(\phi^p_j)\to f(p)\quad \text{ as }j\to \infty. $$ This shows that we can recover the value $\omega(p)\equiv f(p)$ of the distribution $\omega$ at the point $p$ via a limit of such Dirac sequences.

      Now, suppose that for some $\omega\in D'(\mathbb R^n)$ and $p\in \mathbb R^n$ we just know that $ \lim_{j\to \infty}\omega(\phi^p_j) $ exists for every $\phi\in C^\infty_c(\mathbb R^n)$ with $\int_{\mathbb R^n}\phi(x)d x=1$ and is independent of $\phi$. In view of the above it then seems reasonable to define $\omega(p):=\lim_{j\to \infty}\omega(\phi^p_j)$ and to say that $\omega$ has a well-defined value at the point $p$.

      Q: Is this definition useful in any sense? I have the feeling that it might be fundamentally flawed. In that case, I'd find it interesting to know what's the greatest generality in which one can make sense of "the value of a distribution at a point".

      Additional thoughts after 1st edit: Some "consistency checks" for the definition would in my opinion be the following:

      1. If the value of $\omega$ exists at every point in some open set $U\subset \mathbb R^n$ and the function $f$ defined on $U$ by these values is continuous, then $\omega|_U$ is given by $f$.

      2. If the value of $\omega$ exists at Lebesgue-almost every point in some open set $U\subset \mathbb R^n$ and the values define a function $f\in L^1_{\mathrm{loc}}(U)$, then $\omega|_U$ is given by $f$.

      I believe that at least property 1 should be true and I'll check it once I find the time.

      2nd edit: My question is related to this MO question which corresponds to the case $f\equiv 0$.

      Answer

      Cancel

      特码生肖图
      <ruby id="d9npn"></ruby>

          <sub id="d9npn"><progress id="d9npn"></progress></sub>

          <nobr id="d9npn"></nobr>

          <rp id="d9npn"><big id="d9npn"><th id="d9npn"></th></big></rp>

          <th id="d9npn"><meter id="d9npn"></meter></th>

          <ruby id="d9npn"></ruby>

              <sub id="d9npn"><progress id="d9npn"></progress></sub>

              <nobr id="d9npn"></nobr>

              <rp id="d9npn"><big id="d9npn"><th id="d9npn"></th></big></rp>

              <th id="d9npn"><meter id="d9npn"></meter></th>

              轩辕传奇手游归元鼎放置公式 黑龙江时时彩10分钟 莱特币交易行情 神秘的百慕达怎么玩 天天酷跑黄金奖池排行 西班牙莱加内斯队 恩波利vs尤文直播 重庆百变王牌开奖结果 信誉的棋牌平台 外星大袭击APP下载