<ruby id="d9npn"></ruby>

      <sub id="d9npn"><progress id="d9npn"></progress></sub>

      <nobr id="d9npn"></nobr>

      <rp id="d9npn"><big id="d9npn"><th id="d9npn"></th></big></rp>

      <th id="d9npn"><meter id="d9npn"></meter></th>

      2 I add a tag.
      | link
      1
      source | link

      The (co)tangent sheaf of a topological space

      Let $X$ be a topological space (assume additional assumptions if needed) and denote by $\mathcal O _X$ its sheaf of $\Bbbk$-valued continuous functions where $\Bbbk$ is $\mathbb{R}$ or $\mathbb{C}$ with standard topology.

      Then, as it is done in the differentiable setting or in algebraic geometry, one can define the following objects $$T_X:=\mathscr{Der}_\Bbbk (\mathcal O_X,\mathcal O_X)$$ the tangent sheaf, i.e. the sheaf of $\Bbbk$-linear derivations of $\mathcal O_X$ with values in $\mathcal O_X$ (on local sections, $\Bbbk$-linear maps $D:\mathcal O_X(U)\to\mathcal O_X(U)$ satisfying Leibniz: $D(f\cdot g)=f\cdot Dg + g\cdot Df$), and $$\Omega_X^1:=\mathcal I/\mathcal I^2$$

      the sheaf of differentials, where $\mathcal I$ is the ideal sheaf of $X$ embedded diagonally $\Delta:X\hookrightarrow X\times X$ into $X\times X$ (i.e. $\mathcal I(U)=$ functions in $\mathcal O_{X\times X}(U)$ that are zero on every point of $\Delta(X)\subset X\times X$).

      Well, what can be said about these two sheaves? Anything interesting at all?

      Also, is there any relationship between $T_X$ and the "tangent microbundle" $\tau_X$ in case $X$ is a topological manifold?

      特码生肖图
      <ruby id="d9npn"></ruby>

          <sub id="d9npn"><progress id="d9npn"></progress></sub>

          <nobr id="d9npn"></nobr>

          <rp id="d9npn"><big id="d9npn"><th id="d9npn"></th></big></rp>

          <th id="d9npn"><meter id="d9npn"></meter></th>

          <ruby id="d9npn"></ruby>

              <sub id="d9npn"><progress id="d9npn"></progress></sub>

              <nobr id="d9npn"></nobr>

              <rp id="d9npn"><big id="d9npn"><th id="d9npn"></th></big></rp>

              <th id="d9npn"><meter id="d9npn"></meter></th>

              福建11选5走势 山东十一选五开奖软件 黑龙江人社app 14足彩胜负彩竞彩比分 vr赛车设备价格 体福建时时 海南彩票网上怎么买 福建时时中奖号码表 秒速赛计划数据 vr彩票开奖走势图