There's a heuristic idea that "most" closed manifolds $M$ are aspherical (i.e. $\pi_{\geq 2}(M) = 0$). Does this heuristic extend usefully to all spaces -- or at least to all finite CW complexes?

To make this question more precise, I should say something about in what sense "most" manifolds are aspherical. I don't know a lot about this heuristic, but here's where I'm coming from:

It's true in low dimensions: trivially in 0 or 1 dimensions, and by classification of surfaces in 2 dimensions. In 3 dimensions, I've heard it said that part of the upshot of Thurston's Geometrization Conjecture is that "most" 3-manifolds are hyperbolic, and in particular aspherical.

There's some discussion of this heuristic in this survey article of Luck (at the end).

How do things look if we think about CW complexes? Well, every 0 or 1-dimensional CW complex is aspherical. And the Kan-Thurston theorem tells us that every space is homology-equivalent to an aspherical space. But it's really not clear to me whether I should think of "most" spaces as being aspherical.